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ABSTRACT

In many military environments, such as fighter jet cockpits, the increasing use of
digital communication systems has created a need for robust vocoders and
speech recognition systems. However, the high level of ambient noise in such
environments makes vocoders less intelligible and makes reliable speech
recognition more difficult. One method of enhancing the noise-corrupted speech
is adaptive noise cancellation. In previous research, this method was tested in a
simulated cockpit environment, yielding impressive results. However, in new
simulations, reflecting more realistic conditions, adaptive noise cancellation has
been less successful. Spectral analysis of the data shows that the spectral
concentration of the ambient noise, along with the microphone characteristics,
has a significant effect on the performance of adaptive noise cancellation.
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ADAPTIVE NOISE REDUCTION
IN AIRCRAFT COMMUNICATION SYSTEMS

1. INTRODUCTION

With the advent of digital communication systems in fighter aircraft, there has been an
increasing interest in developing vocoders and speech recognition systems for use in aircraft. How-
ever, the high levels of ambient noise in such environments make vocoders less intelligible and
make reliable speech recognition more difficult. Therefore, attention has been directed toward the
problem of enhancing the pilot’s noise-corrupted speech. One method of improving the signal-to-
noise ratio is adaptive noise cancellation (ANC).

ANC is a noise-reduction method that assumes no a priori knowledge of the noise or speech
characteristics. Therefore, this technique has been considered for the problem of noise reduction
in the cockpit environment, where combat conditions can lead to highly variant noise conditions.
This method uses multiple inputs: a primary signal and one or more reference signals. The pri-
mary signal contains the noisy speech that needs enhancement. A second sensor provides the ref-
erence signal, which ideally contains only the ambient noise and no speech components. (In this
research, only one reference input was used.) Adaptive filtering techniques are applied to these
two signals in order to reduce the noise level in the primary output.

In previous research by Harrison,” ANC was tested on data collected from a simulation of a
fighter jet cockpit environment. This resulted in a reduction of the noise by the impressivc
amount of 11 dB. However, in a subsequent publication, Darlington et al., claimed that Harri-
son’s success was a result of his use of only one noise source. In an actual cockpit environment,
they claimed, the noise is diffusely distributed. In such a noise field, with the primary and refer-
ence sensors separated by a few centimeters, the coherence between the primary and reference sig-
nals becomes very small at frequencies above about 1 kHz. Therefore, ANC should perform
poorly in an actual cockpit environment, in which there is a significant amount of noise above
1 kHz.

In order to assess the performance of ANC in a more realistic environment, new simulations
were performed at the Wright-Patterson Air Force Base near Dayton, Ohio. One of the issues
studied in these experiments was the effect of using multiple loudspeakers for generating the
ambient noise field. When ANC was found to perform poorly on the data collected from these
experiments, a second series of tests was conducted at MIT Lincoln Laboratory in Lexington,
Massachusetts. This time, much attention was given to the primary microphone characteristics.
Using only one loudspeaker, two types of primary microphones were tried: the standard-issue gra-
dient microphone and an omnidirectional microphone. In analyzing the data from these experi-
ments, the speech signals were not used; only the primary and reference noise signals were
studied. When the gradient microphone was used, ANC only reduced the noise by about 2 dB.



When the omnidirectional microphone was used, ANC reduced the noise by about 9 dB. There-
fore, the microphone characteristics seem to be an important factor. A thorough spectral analysis
of all the data clearly shows why this is the case.

This report is organized into six sections. The second section includes an introduction to the
theory of ANC. Section 3 summarizes previous research of ANC in aircraft communication sys-
tems. In the fourth section, the new simulations are described. The fifth section presents the
experimental results, including a spectral analysis of the data. Finally, concluding remarks are
given, along with suggestions for future research.
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2. ADAPTIVE NOISE CANCELLATION

One method of enhancing speech corrupted with additive noise is to pass the signal through
a linear, time-invariant filter. If the statistics of the speech and noise are stationary and known,
then Wiener filtering theory can be used. However, when there is no a priori knowledge of the
speech or noise, or when their statistics are nonstationary, adaptive filtering can often be an
effective alternative.

Adaptive noise cancellation3:5.10.19.20.21 ig 3 noise-reduction method that uses multiple inputs:
a primary signal and one or more reference signals. For speech applications, the primary signal is
the noisy speech that we want to enhance. The reference signals are obtained from auxiliary sen-
sors, located in the same noise field, but isolated from the primary sensor. For simplicity, we
shall only consider the case of one reference signal. To enhance the noisy speech, the reference
signal is adaptively filtered and then subtracted from the primary signal. The resulting output will
hopefully contain the undegraded speech with less noise than the primary signal.

In this section, we begin with the theoretical development of ANC. This is followed by a
description of the LMS algorithm, one method of implementation. In the final section, several
limitations of ANC are discussed.

2.1 THEORETICAL DEVELOPMENT

Figure 2-1 shows the basic model of adaptive noise cancellation.!® Here, s is the primary
speech signal and n, is the reference noise signal. In this model, the reference noise, n,, passes

Figure 2-1. Basic ANC model.



through some transformation, H, to form the primary noise signal, n,. In general, this transfor-
mation can be nonlinear and time-variant. However, the success of ANC depends upon the
assumption that H is at least approximately linear. The primary signal (i.e., the noisy speech), p,
is simply the sum of the primary speech and the primary noise signals. In order to enhance this
primary signal, the reference noise is first processed by an adaptive filter, H, resulting in an esti-
mate, y, of the primary noise. Finally, this noise estimate is subtracted from the primary signal,
yielding the enhanced output, z. In this model, we assume that s and n; are uncorrelated random
processes. If H were known a priori, then the trivial solution would be to let H = H. Unfortu-
nately, though, H is unknown in many cases of interest.

In order for the output, z, to be a minimum-mean-squared-error (MMSE) estimate of the
desired signal, s, the adaptive filter must be varied so that the output noise power is minimized.
For simplicity, assume that s and n, are zero-mean, wide-sense stationary random processes.
Because s is assumed to be uncorrelated with n,, s is also uncorrelated with n, and y. We can
now compute the output noise power:

E[(z - 5)2] = E[z2] - 2E[sz] + E[s2]
= E[2?] - 2E[s(s + n, - y)] + E[s?]
= E[72] - E[s?] - 2E[sn,] + 2E[sy]
= E[2) - E[s] . 2.1)

The signal power, E[s2], is unaffected by the adaptive filter. Therefore, the output noise power is
minimized by minimizing E[z2], the total output power. Equivalently, we can compute the mean
squared error in terms of the error, y - np, in the noise estimate:

E[(z - s)2} = E[(s + np - y - 5)?]
= E[(y - ng)?] . 22)
This result shows that z is a MMSE estimate of s when y is a MMSE estimate of Np, which

agrees with intuition. Indeed, if it is possible to design H so that y = n, exactly, then the output
will be noise-free, with z = s.

p

Thus, ANC can be viewed in several ways. In order for z to be a MMSE estimate of s, the
adaptive filter coefficients must be varied in a particular manner. If they are chosen properly,
then we will simultaneously realize the following equivalent results:

® zis a MMSE estimate of s;

® yis a MMSE estimate of Np;

® The output noise power is minimized,
® The total output power is minimized.

Minimization of the total output power is the basis for most ANC algorithms. The LMS algo-
rithm was used to perform this minimization by continually updating the filter coefficients.
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Suppose H is implemented as a linear, adaptive filter. Then perfect noise cancellation will
only be possible if n, and n, are related by a linear filter. If np and n, are correlated, but are not
related by a linear filter, thereby violating the model in Figure 2-1, then the noise cancellation
will only be partially effective. It is also instructive to consider the case in which the primary and
reference noises are uncorrelated. In this case, the primary noise is uncorrelated with the filter
output, y. Therefore, the output noise power becomes

E[(z - 9] = E[(s + ny -y - 9)7]

= El(n, - y)?]
= E[n] - 2E[yn] + E[y?]
= E[n]] + EyY] . (23)

This is minimized by forcing all the filter coefficients to be zero, thereby shutting off the filter
and causing E[y2] = 0. The result is z = p. Therefore, when the input noises are uncorrelated, no
noise cancellation occurs.

If s and n, are stationary, and H is time-invariant, then we can use Wiener filtering theory
to determine the optimal H(z), in terms of s and n,. The classic form of a single-input, single-
output Wiener filter is shown in Figure 2-2. Here, the input, x, passes through a linear, time-
invariant filter, H(z). The filter is chosen so that the output, y, is an optimal estimate (in the
least-squares sense) of the desired signal, d. By comparing Figure 2-1 and 2-2, we see that sta-
tionary ANC (with a linear H) can be viewed as a Wiener problem, with x = n,, d = p, and
e = z. Of course, we must assume that the adaptive process has converged to the steady-state
solution.

X pl[zl —- Y

Figure 2-2. Wiener filter.



It is well-known that the Wiener solution is given by the equation,

. Su@
H(@) = =——= (2.4)
Spn (2
where
o0
Sap@= 3 Elnn)p(n + m)zm 2.5)
m=-9oQ
o0
Spn (2 = 2 E[n(n)n(n + m)Jz’™ ; (2.6)
ms=-00
If n, and np are exactly related by a linear filter, in accordance with the model in Figure 2-1,
then the Wiener filter reduces to '
. Spa@HE
Ry s————— (2.7)
Snrnr(z)
= H(z)

as we would expect. In a general environment, where s and n, may be nonstationary and H may
be time-variant, H will tend to track H. However, the adaptive process takes time to converge.
Therefore, successful tracking will occur only if the environment varies slowly.

2.2 LMS ALGORITHM

The adaptive filter, PAI, is usually implemented as an FIR filter with variable coefficients. This
is sometimes called an adaptive linear combiner or a tapped delay line. One of the more popular
methods of updating the coefficients is the Widrow-Hoff LMS algorithm.!? This algorithm is one
of a class of algorithms that use the method of steepest descent to search for the optimal solu-
tion. The development of this algorithm begins with a general expression for the total output
power as a function of the filter coefficients. In Section 2.1, we saw that optimal noise cancella-
tion is achieved when the coefficients are adapted to minimize the total output power.

Let the impulse response of the adaptive filter be zero outside the interval, 0 < n < L. To
simplify the notation, define a time-variant vector of filter weights as



where hg, hy, ..., and h;_| represent the filter coefficients and n is the time index. Similarly, we
define a vector containing the latest L samples of the reference signal:

In - (L-1

Then the output of the adaptive filter at time n is the inner product or r, and h;:

y =HWr . (2.8)

Ziten
The output of the system is given by

zn=pn—yn=pn—hT]£n . (2.9)

We must now adjust the filter weights so that the total output power is minimized. To do
this, we first assume that the inputs are stationary and that the filter taps are fixed. Then the
total output power, the “error function”, is

E[Z1= E[(p, - bir,)?]
= E [p3] - 2E[p,rplh, + hE[rh, (2.10)
For simplicity, define C = E[p,r,) and R = E[Infg]. Then the equation can be written as
E[#] = E[p7] - 2Ch, + iR b, 211)

Therefore, the error function is a quadratic function of the weight vector, h,. That is, this equa-
tion defines a hyperparaboloid in RL. Because the output power is nonnegative, this surface must
be concave upward. Consequently, there exists a unique global minimum, with no other local
minima.

One way of searching for this minimum is the method of steepest descent. This is an itera-
tive solution that continually updates the filter coefficients until the global minimum is reached.
At each iteration, the filter taps are changed by an amount proportional to the negative gradient
of the output power:

hper=hy -p¥q . (2.12)
Here, u is an adaptation constant that controls stability and determines the rate of convergence.
V , is the gradient of the error function at time n. This is obtained by differentiating Equa-
tion (2.11) with respect to the filter coefficients:

o (athﬂ 2E[7]) T> A

——,...,—=~—— [=-2C_+2R h 2.13
aho ahL_l —qn = ( )



Instead of using this exact form of the gradient, the Widrow-Hoff LMS algorithm estimates the

gradient by assuming that 2[21 is a reasonable approximation of E[zrzl]. Thus, we differentiate zg

with respect to the filter coefficients:

by e 222 \T oz oz L

& n n n n

an S shidap 222n - R :_2ZnIn (214)
aho ahL_l aho ahL_l

The LMS algorithm is obtained by substituting this gradient estimate into Equation (2.12):

hoy1=hy +2uz, 1, N (2.15)
This provides an easy way to iteratively compute an approximation of the optimal filter coeffi-
cients. For comparison, the ideal solution is easily obtained by setting the gradient of the error
function to zero and solving for the filter weight vector. Using Equation (2.13), we obtain

h* = R

he=Rlc, 216)
This optimal filter weight vector is generally called the Wiener weight vector.

It can be shown that the gradient estimate used in the LMS algorithm is unbiased. However,

the convergence of the filter weights is a much more complicated issue. If we make the assump-

tion that the input vectors, r,, are stationary and uncorrelated over time, then the expected value
of the vector of filter weights can be shown to converge to the Wiener weight vector:

lim hy =h* . 2.17)

n—oo

However, this convergence is guaranteed only if

(2.18)

e i
= 5

max

where A ., is the largest eigenvalue of R. (R, is constant because r is stationary.) Rather than
compute the eigenvalues, we can instead find an approximate upper bound for u by considering
the trace of R. Because this is a positive semidefinite matrix, we have the following inequality:

L
Amax € X, Aj= trfR] (2.19)

Because we are assuming stationarity of the reference signal, we have tr[R] = LE[r2], where E[r’]
is simply the reference signal power. This leads to the following approximation for the bounds on
s

e : (2.20)

<
t{R]  LE[r]

0<pu



Although this analysis has assumed that the reference signal vectors are uncorrelated and station-
ary, the results seem to apply reasonably well in general practice. Unfortunately, no uncondi-
tional proof of convergence of the LMS algorithm is known at this time.

In addition to the bias, we must also examine the steady-state covariance of the filter
weights. Widrow derived an approximate result,

covih]=~upéninl (2.21)

where £, is the theoretical minimum value of E[zﬁ] and I is the identity matrix. Therefore, a
small adaptation constant results in less noise in the steady-state filter weights.

Unfortunately, a small adaptation constant also corresponds to slow convergence. The learn-
ing curve for the system output noise power can be approximated by a sum of exponentials.
Widrow derived an estimate of the average time constant associated with this learning curve:

L
4ptfR] 4uE[r?]

T =~

(2.22)

Therefore, the time constant for convergence is inversely proportional to the adaptation constant.
As a result, there is a trade-off between the steady-state covariance of the filter coefficients and
the rate of convergence. However, if the environment is nonstationary, then a large adaptation
constant must be chosen in order to provide adequate tracking of the environment. In this case,
there is less freedom in choosing the adaptation constant.

2.3 LIMITATIONS

In this section, we address several factors that can degrade the performance of adaptive noise
cancellation. These include several practical considerations, as well as two conditions that violate
the basic model in Figure 2-1. One such violation is the presence of uncorrelated noises in the
inputs. Another condition not accounted for in the model is the presence of speech components
in the reference signal. As we shall see, these can seriously reduce the effectiveness of noise
cancellation.

To begin with, there are several practical limitations associated with adaptive filtering. The
LMS algorithm uses a causal, finite-extent, adaptive filter to estimate the transformation, H.
However, H is not always modeled well by a causal filter. Therefore, it may be necessary to
introduce a small delay into either the primary or the reference channel in order to achieve
approximate causality. Another problem is limited frequency resolution. The frequency resolution
is inversely proportional to the length of the impulse response of the adaptive filter. Conse-
quently, there is a trade-off between the frequency resolution and the amount of computation.

In many applications, the convergence time of the adaptive filter is also a significant issue.
Even in a stationary environment, the filter coefficients must undergo many iterations before they
converge. This convergence time depends on several factors: the algorithm used to implement the
adaptation, the length of the adaptive filter, and the shape of the reference noise spectrum.



In addition to these considerations, there are further limitations of ANC. In particular, the
model of Figure 2-1 is often unrealistic. One condition that violates this model is the presence of
uncorrelated noises in the primary and reference inputs.!9 To study this problem, let us first
extend the original model to include uncorrelated noise sources, m, and m,. The modified model
is shown in Figure 2-3. The primary signal now contains three components: p = s + np + mp,

: —

Figure 2-3. ANC model with uncorrelated noises.

Similarly, the reference signal, r, is now given by r = n. + m,. Next, define the signal-to-noise
density ratio (SNDR), p, to be the ratio of the signal power spectral density to the noise power
spectral density. This gives us a measure of the signal-to-noise ratio as a function of frequency.
Assume that H is linear and time-invariant, and that all of the signals are stationary. For
convenience, define the ratio of the uncorrelated noise spectrum and the correlated noise spec-
trum at the primary input to be

A@) = ——P2— (2.23)

10
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Similarly, define the ratio of the uncorrelated noise spectrum and the correlated noise spectrum
at the reference input to be

Stralz)
r
B(z) = ——MM . 2.24

Then it can be shown that the ratio of the output SNDR to the primary SNDR is

Poul® _ [A@+1][B@)+ 1]
Ppi®  A@)+ A@B() + B(z)

(2.25)

This formula provides a measure of the performance of ANC in the presence of uncorrelated
noises. It is important to note that if m, and m, are zero, then A(z) and B(z) are zero. From
Equation (2.25), it is evident that, if this were the case, then there would be an infinite improve-
ment in the SNDR. This is expected because, as was shown in the previous section, the Wiener
solution could be used to give exact cancellation of the noise, resulting in a pure speech signal at
the output. In general, the presence of uncorrelated noises diminishes the performance of ANC.
From Equation (2.25), it is clear that the performance is maximized by minimizing A(z) and B(z),
which measure the amount of uncorrelated noise present.

Another measure of the presence of uncorrelated noises is called the coherence.!® The
magnitude-squared coherence between two wide-sense-stationary random processes, X and vy, is
defined to be

| Sxy(2)| 2
I S et i 2.26
’YXy(Z) Sxx(Z) Syy(Z) ( )
where
Sy@= 3 E[x(n)y(n + m)jz™ (2.27)
Sux(@) = z E[x(n)x(n + m)]z’™ (2.28)
Sy@= 3 Elyn)yn+ mpm (2.29)

(A more general definition would include a phase term. However, we shall only consider the
magnitude.) For convenience, we shall refer to the magnitude-squared coherence simply as the
coherence. It can be shown that the coherence, 'yfy(z), represents the fraction of Syy(z) that is
related to S,,(z) by a linear filter. If x and y are the input and output of a linear, time-invariant

11



filter, then their coherence equals one. If y contains spectral components that are uncorrelated
with x, then the coherence is less than one at the corresponding frequencies. If x and y are
uncorrelated, then the coherence equals zero. Therefore, the coherence can be thought of as a
correlation coefficient that is a function of frequency. Because ANC uses the reference noise to
estimate the primary noise, a large coherence between the primary and reference noise signals is
necessary if ANC is to be effective. In fact, an estimate of the amount of noise reduction can be
given in terms of the coherence:

Pout(2) < 1

= (2.30)
Ppri®  1-75, ()
rp

where -yg o (2) is the coherence between the primary and reference noise signals. Therefore, it is
r

clear that the performance increases as the coherence approaches one. It is also useful to define
an attenuation function that measures the expected noise reduction in decibels:

atten(e)®) = -10 log,[1-v2 , (¢%)] dB ~ (2.31)
rp

In Section 5, the coherence and the attenuation function are used to analyze the performance of
ANC with experimental data.

Another violation of the basic model is the leakage of speech components into the refer-
ence.20 To determine the effect of this, let the model be extended to include a path from the
primary input to the reference input. The transformation along this path will be denoted by H,.
For clarity, we shall now use H| to denote the transformation along the path from the reference
to the primary. The resulting model is shown in Figure 2-4. For this discussion, the uncorrelated

Figure 2-4. ANC model with speech leakage.

12
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noises are omitted from the model. Of course, the environment could easily include uncorrelated
noises in addition to speech leakage.

Widrow has shown that the resulting SNDR at the output is given by

1
Pour(?) = i (2.32)

where p..((z) is the SNDR at the reference input. When there is no leakage of speech into the
reference input, this equation shows that the output SNDR will be infinite — i.e., the noise can-
cellation is exact. However, when the reference does contain speech components, the noise reduc-
tion will be only partially effective. Therefore, we see that the presence of speech in the reference
does degrade the performance.

This degradation appears as distortion of the speech in the output, caused by cancellation of
part of the speech signal. To evaluate the extent of this cancellation, define the signal distortion,
D(z), to be the ratio of the spectrum of the speech component of y to the spectrum of the pri-
mary speech signal. Then it can be shown that

o i L (2.33)

Therefore, low signal distortion results from a low SNDR at the reference input and a high
SNDR at the primary. This agrees with the intuitive behavior of the system.

As we have seen, there are many limitations of ANC. To begin with, there are several prac-
tical issues that need to be considered when implementing the technique. However, violations of
the model are a much more serious issue. The presence of uncorrelated noises in the inputs
places definite limits on the amount of noise reduction that can be expected. One useful measure
of the amount of uncorrelated noise present is called the coherence. This measure is used later in
the report to analyze the performance of noise cancellation. Another degradation occurs when
speech leaks into the reference signal. This has the undesirable effect of canceling part of the
speech in the output. Therefore, these limitations must be considered in any application of ANC.

13



3. ANC IN AIRCRAFT COMMUNICATION SYSTEMS

Adaptive noise cancellation has been successfully used in many applications. Only recently
has it been considered for use in aircraft communication systems. The advent of digital commun-
ication systems in fighter aircraft has generated considerable interest in developing vocoders and
speech recognition systems for use in aircraft. However, the high levels of ambient noise in such
environments make vocoders less intelligible and make reliable speech recognition more difficult.
Therefore, it has been proposed that ANC be used to enhance the pilot’s noise-corrupted speech.

When ANC is applied to a fighter jet cockpit environment, numerous issues arise. For
example, if the primary sensor is placed inside the pilot’s oxygen face mask, where should the
reference sensor be placed? Will the primary and reference noises be very correlated? What can
be done if speech leaks into the reference input? Should the sensors be gradient microphones, or
should they be omnidirectional microphones?

In the past, several researchers have used cockpit simulations to study the performance of
ANC in aircraft. Harrison® was able to achieve significant noise reduction, but his simulation was
very simplistic. Darlington et al., later showed that, in a diffuse noise field, the coherence
between the primary and reference signals is very small above about 1 kHz. Therefore, they
claimed that in an actual cockpit, ANC will only work well at very low frequencies. In this chap-
ter, this past research is reviewed. But first, the fighter jet cockpit environment is described.

3.1 FIGHTER JET COCKPIT ENVIRONMENT

In a fighter jet cockpit, the pilot wears apparatus that provides him with a two-way com-
munications link. The pilot wears an oxygen face mask, which is attached to his helmet. In turn,
the oxygen face mask is connected to an oxygen supply via a flexible hose. Inside the face mask,
a gradient, “noise canceling” microphone is mounted. This generates the primary signal in the
model for adaptive noise cancellation. Also, a small acoustic speaker is mounted in each earpiece
of the helmet. These speakers serve two purposes. First, they give the pilot the means to monitor
radio communications. Also, they provide an audio feedback of the pilot’s own speech. Without
this feature, the pilot may find it difficult to hear himself speak, due to the high ambient noise
level and the obstructing helmet.

In a nonradiating enclosure, such as an oxygen face mask, a gradient microphone offers per-
formance superior to that of a pressure microphone. According to Morrow’s studies of speech in
nonradiating enclosures, the mask cavity tends to boost the low frequency energy and shift the
formants (especially the first) upward in frequency.!2!3 Unlike a pressure microphone, a gradient
microphone appears to counteract this bass boost, thereby removing the need for subsequent low-
frequency equalization. Furthermore, the locations of the formants tend to be preserved more
with a gradient microphone than with a pressure microphone. In addition to the change in for-
mant frequencies, pressure microphones cause drastic changes in the relative amplitudes of the
formants. Simple equalization of the pressure-microphone signal does not restore the locations of

IS



the formants; nor does it restore their relative amplitudes. Therefore, gradient microphones are
preferred.

The relative superiority of gradient microphones in small, nonradiating enclosures is the
result of two basic operating characteristics.513 One highly desirable trait of gradient micro-
phones is their directionality. The response to a near-field sound source is approximately propor-
tional to the cosine of the angle of incidence (with respect to the axis of the microphone). There-
fore, reflections from the sides of the face mask are de-emphasized. Another benefit of gradient
microphones is their attenuation of far-field sound sources. This attenuation is quite significant at
low frequencies, but becomes less pronounced with increasing frequency. In the cockpit applica-
tion, the far-field sound is mostly ambient noise. Therefore, the gradient microphone becomes a
noise-canceling microphone at low frequencies. If the power spectrum of the interfering noise
decreases with frequency, then a significant amount of noise cancellation can result,

In the United States Air Force, the standard-issue oxygen face mask is equipped with an
M-101 gradient microphone.!! As shown in Figure 3-1, the far-field frequency response of this
microphone peaks near 2.5 kHz. The response to frequencies below 1 kHz is much lower. In fact,
the gain drops by about 36 dB as the frequency decreases from 1000 to 300 Hz.

-10 =

GAIN (dB)
N
o
1

-40 | | | |
100 200 500 1000 2000 5000 10000

FREQUENCY (Hz)

Figure 3-1. Frequency response of the M-101 gradient microphone.
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3.2 PREVIOUS RESEARCH BY HARRISON

Several researchers have studied the application of adaptive noise cancellation to the fighter
jet cockpit environment. The most successful results were obtained by Harrison87.9 in a simula-
tion of a fighter jet cockpit. The experiment was conducted in a partially soundproof room
(about 10 ft by 10 ft) at MIT Lincoln Laboratory. In order to create the ambient noise field,
digitally-created, white, gaussian noise was played through a loudspeaker, which was mounted on
one of the walls. A subject, wearing a standard-issue oxygen face mask, was located near the
loudspeaker. Two microphones were used to collect the data. One microphone, providing the
primary signal, was placed inside the mask. A second microphone (Controlonics ME-9A electret-
condenser type), providing the reference signal, was attached to the exterior of the mask, as close
as possible to the primary microphone.

Two 2-channel recordings were then made. In the first 2-channel recording, speech was
recorded, with the noise source turned off. In the second 2-channel recording, the ambient noise
was recorded, with the subject holding his breath. Altogether, four signals were obtained: primary
speech, reference speech, primary noise, and reference noise. The primary speech and primary
noise signals were then digitally combined to form a composite primary signal. Similarly, the ref-
erence speech and reference noise signals were digitally combined to form a composite reference
signal. The reason for recording the speech and noise separately was twofold. Because of the
limited power of the loudspeaker, the primary noise signal was very small. Consequently, a reli-
able recording of a composite primary signal (speech plus noise) could not be obtained, due to
the limited dynamic range of the recording equipment. Another reason for recording the speech
and noise separately was that the signal-to-noise ratio (SNR) could be more easily manipulated.

Prior to Harrison’s work, Boll and Pulsipher! used ANC to enhance noisy speech in an
environment where no acoustic barrier was present. In order to keep the leakage of speech into
the reference at a tolerable level, the primary and reference microphones had to be placed 12 ft
apart. In the cockpit application, the oxygen face mask provides an acoustic barrier between the
primary and reference. Because of this barrier, Harrison was able to place the microphones much
closer to each other. Shortening the distance between the sensors is desirable for two reasons. It
reduces the delay between the primary and reference signals, and it increases their coherence. In
spite of the acoustic barrier, some of the speech still manages to leak into the reference. As was
shown in Section 2.3, the presence of speech components in the reference signal results in less
noise reduction, along with distortion of the processed speech signal, especially when the ambient
noise level is low. To compensate for speech leakage, Harrison made a novel modification to the
classic ANC method. Rather than update the adaptive filter after each input sample, he only
updated the filter taps during speech inactivity. By incorporating a speech detection algorithm, he
was able to freeze the filter taps during speech intervals and update them during silent intervals.
Of course, the success of this technique depends on the stationarity of the noise. During speech
intervals, the system must use a filter that was trained during the previous silent interval (up to
0.6 s earlier, according to Harrison). Furthermore, it is assumed that the silent intervals are long
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enough for the filter to converge. With the LMS algorithm, Harrison found that the convergence
typically took about 120 ms.

In spite of these limitations, he was able to achieve very good results. Before processing the
data, the primary signal was delayed by a small amount to force causality. By adding the
appropriate delay, a shorter filter length could be used. Harrison found that a filter length of
50 taps was enough to increase the SNR by approximately 11 dB. Furthermore, the performance
was approximately independent of the primary SNR. In addition to the LMS algorithm, Harri-
son tried the recursive least squares (RLS) algorithm for updating the filter coefficients. The RLS
algorithm offers faster convergence at the expense of more computation. The two algorithms per-
formed comparably.

3.3 PREVIOUS RESEARCH BY DARLINGTON ET AL.

Subsequent to Harrison’s research, new findings were reported by Darlington e al.* They
claimed that Harrison’s simulation, which used only one loudspeaker, did not accurately represent
an actual cockpit environment. Rather than modeling the noise field as a single noise source,
they suggested modeling it as a diffuse noise field. In a diffuse noise field, the noise does not
emanate from any one direction, but instead comes from independent sources from all directions.
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